Dica do Mês – Conhecendo e aplicando o uso de atualização de estatísticas incrementais

Muito boa tarde pessoal, salve, salve comunidade e amantes de banco de dados.

Tudo bem com vocês? Estou aqui mais uma vez em um novo post do meu blog na sessão Dica do Mês, hoje falando de um assunto que até alguns dias atrás eu sinceramente nunca havia feito uso, mas com base em um post publicado do Ahmad Yaseen no MSSQLTips.com, acabou me servindo como fonte de inspiração para elaborar e compartilhar este post com vocês.

Antes de começarmos a falar sobre o post de hoje, nada mais justo começar agradecendo como de costume a você está aqui neste momento acessando meu blog. Espero que possa ter encontrado o que precisa, bem como, esteja gostando do conteúdo publicado, fique a vontade para entrar em contato expressando suas opiniões e demais pensamentos.

Dando continuidade, vamos conhecer um recurso adicionado na versão 2014 do Microsoft SQL Server a partir do Service Pack 2 e mantido no Microsoft SQL Server 2016 SP1 conhecido como Estatísticas Incrementais ou Incremental Statistics, pode parecer estranho o nome, mas é exatamente isso que este recurso permite, realizar o processo de atualização de estatísticas de maneira incremental, ou para muitos incrementar o processo de atualização de estatísticas aplicadas aos nossos bancos de dados e seus respectivos objetos.

Parece ser coisa de louco isso, mas posso garantir que não é, absolutamente é algo totalmente viável e aplicável a qualquer ambiente que se faça uso do Microsoft SQL Server em conjunto com as funções e scheme de particionamento de dados.

E ai esta curioso para saber um pouco sobre este recurso?

Eu estou, sendo assim, vamos em frente, seja bem vindo ao post Dica do Mês – Conhecendo e aplicando o uso de atualização de estatísticas incrementais.

Seguindo….


Introdução

O otimizador de consultas do Microsoft SQL Server depende fortemente das estatísticas na geração a execução de plano de consulta mais eficiente. Estas estatísticas fornecem ao otimizador a distribuição dos valores de colunas na tabela e o número de linhas, também chamada a cardinalidade que resultará da consulta.

A ausência destas estatísticas, ou a existência de estatísticas desatualizadas, proporciona a ocorrência de querys consideradas lentas, neste sentido, o otimizador de consulta “query optimizer” acaba sendo obrigado a utilizar estatísticas imprecisas para criar o plano de execução, que pode ser considerado um plano não ideal para executar a consulta neste caso.

O SQL Server geralmente faz o seu trabalho em manter estas estatísticas atualizadas, mas como um administrador de banco de dados, você deve fazer seu trabalho, em alguns casos, atualizando as estatísticas manualmente. Atualizar estatísticas manualmente em tabelas grandes pode ser como um grande desafio, bem como, em tabelas pequenas pode-se imaginar que a estatística já esteja atualizada, o que em alguns cenários isso acaba não ocorrendo.

Um dos cenários mais impactados pelo uso de estatísticas desatualizadas ou atualizadas parcialmente são as tabelas particionadas. Como destacado anteriormente através do uso das funções de particionamento de dados introduzido no Microsoft SQL Server 2008, temos a capacidade de distribuir nossos dados em partições “pequenos fatias de armazenamento de dados” que nos possibilitar distribuir respectivos valores com base em uma função que análise e identifica o local de armazenamento do mesmo.

Para este tipo de ambiente, o uso de estatísticas como mecanismo para auxiliar no obtenção mais rápida do dado, pode apresentar simultaneamente o papel de herói como também de vilão, isso pode parecer meio confusão, mas não é! Basicamente quando trabalhamos com estatísticas acreditamos que sempre teremos todas as informações armazenados no histograma atualizadas de forma automática de maneira mais precisa possível, algo que não acontece exatamente desta maneira quando trabalhando com particionamento de dados.

Uma das situações mais comuns quando se uso particionamento de dados é a possibilidade de ocorrer a atualização de estatísticas de maneira parcial, ou seja, apena um partição de todo estrutura de partições acaba tendo suas informações de estatísticas atualizadas, o que poderá provocar uma alteração no plano de execução ou a possibilidade de criação de um plano incoerente.

Sabendo desta possibilidade e comportamento, o time de engenheiros e desenvolvedores do Microsoft SQL Server, implementou a partir da versão 2014 SP1 as Estatísticas Incrementais, funcionalidade que nos permite justamente contornar este tipo de situação.

Estatísticas Incrementais – Incremental Statistics

As estatísticas Incrementais, ajudam na atualização de estatísticas para apenas a partição ou partições que você escolher. Em vez de analisar e varrer a tabela inteira para atualizar as estatísticas, a partição selecionada será verificada somente para a atualização, reduzindo o tempo necessário para executar a operação de atualização de estatísticas, atualizando-se apenas a partição modificada.

O outro ponto importante é que a porcentagem de alterações de dados necessário para acionar a atualização automática de estatísticas, sendo este o valor 20% de linhas alteradas, o que proporcionará o uso de atualização de estatísticas no nível da partição, comportamento que não era permitido anteriormente.

Muito legal este novo recurso e principalmente o comportamento do Microsoft SQL Server, agora que já conhecemos conceitualmente como as estatísticas incrementais funcionam, chegou a hora de colocar as mãos no teclado e começar a conhecer de maneira prática esta funcionalidade.

Preparando o ambiente

Para entender a atualizar as estatísticas incrementais, vamos preparar um banco de dados de teste com uma tabela particionada. Começamos com a criação de um novo banco de dados denominado IncrementalStatistics, formado por quatro novos grupos de arquivos além de grupo de arquivos primário padrão, para tal vamos utilizar o Bloco de Código 1 apresentado a seguir:

— Bloco de Código 1 —

— Criando o Banco de Dados IncrementalStatistics —
Create Database IncrementalStatistics
Go
— Adicionando os Filegroups —
Alter Database IncrementalStatistics
Add Filegroup IncrementalStatisticsGrupo1
Go
Alter Database IncrementalStatistics
Add Filegroup IncrementalStatisticsGrupo2
Go
Alter Database IncrementalStatistics
Add Filegroup IncrementalStatisticsGrupo3
Go
Alter Database IncrementalStatistics
Add Filegroup IncrementalStatisticsGrupo4
Go

 

— Adicionando os Arquivos aos seus respectivos Filegroups —

Alter Database IncrementalStatistics
Add File (Name = N’IncrementalStatisticsGrupo1′,
FileName = N’S:\MSSQL-2016\Data\Arquivo-Grupo1-Data.ndf’,
Size = 4096KB,
FileGrowth =1024KB) To Filegroup IncrementalStatisticsGrupo1
Go

Alter Database IncrementalStatistics
Add File (Name = N’IncrementalStatisticsGrupo2′,
FileName = N’S:\MSSQL-2016\Data\Arquivo-Grupo2-Data.ndf’,
Size = 4096KB,
FileGrowth =1024KB) To Filegroup IncrementalStatisticsGrupo2
Go

Alter Database IncrementalStatistics
Add File (Name = N’IncrementalStatisticsGrupo3′,
FileName = N’S:\MSSQL-2016\Data\Arquivo-Grupo3-Data.ndf’,
Size = 4096KB,
FileGrowth =1024KB) To Filegroup IncrementalStatisticsGrupo3
Go

Alter Database IncrementalStatistics
Add File (Name = N’IncrementalStatisticsGrupo4′,
FileName = N’S:\MSSQL-2016\Data\Arquivo-Grupo4-Data.ndf’,
Size = 4096KB,
FileGrowth =1024KB) To Filegroup IncrementalStatisticsGrupo4
Go

Uma vez que o banco de dados é criado com os novos grupos de arquivos e arquivos de dados, precisamos prepará-lo para hospedar a tabela particionada. Nosso próximo passo consiste na criação da função particionada PartitionFunctionIncrementalStatistics que classifica os dados de acordo com os quatro trimestres do ano, sendo assim, vamos utilizar o Bloco de Código 2 apresentado abaixo:

— Bloco de Código 2 —

— Criando a Partition Function PartitionFunctionIncrementalStatistics —
USE IncrementalStatistics
GO

CREATE PARTITION FUNCTION PartitionFunctionIncrementalStatistics (Int)
AS
RANGE RIGHT FOR VALUES
(20171, 20172, 20173, 20174)
Go

Note que nossa PartitionFunctionIncrementalStatistics é composta por quatro partições de valores subdivididos da seguinte forma: 

  • 20171 – Valor que representa o Primeiro Quartil;
  • 20172 – Valor que representa o Segundo Quartil;
  • 20173 – Valor que representa o Terceiro Quartil do Ano; e
  • 20174 – Valor que representa o Quarto Quartil do Ano.

    Talvez você ainda não esteja entendendo o porque estamos fazendo uso deste tipo de implementação, tenha calma no decorrer do post tudo vai ficar mais claro e você terá total noção do porquê estamos utilizando este recurso.

Continuando com a nossa longa caminhada, você deve saber que para se trabalhar com particionamento de dados devemos além de criar uma Partition Function devemos obrigatoriamente criar um Partition Scheme,  que estará vinculado lógicamente a nossa partition function, sendo assim, este é nosso próximo passo, fazendo uso do Bloco de Código 3:

— Bloco de Código 3 —

— Criando o Partition Scheme PartitionSchemeIncrementalStatistics —
CREATE PARTITION SCHEME PartitionSchemeIncrementalStatistics AS
PARTITION PartitionFunctionIncrementalStatistics
TO
(
IncrementalStatisticsGrupo1,
IncrementalStatisticsGrupo2,
IncrementalStatisticsGrupo3,
IncrementalStatisticsGrupo4,
[PRIMARY])
Go

Esta quase tudo pronto para nossa brincadeira, seguiremos com a criação na nossa tabela TableIncrementalStatistics, este é um ponto importante do nosso ambiente, onde estamos fazendo uso da tabela particionada para ilustrar como as estatísticas incrementais vão realizar o seu papel.

TableIncrementalStatistics será composta por algumas colunas, dentre as quais a coluna Quartil, responsável em armazenar o valor do quartil de acordo com o ano informado, como também, é através desta coluna que estaremos realizando o particionamento dos dados. Para isso utilizaremos o Bloco de Código 4 a seguir:

— Bloco de Código 4 —

— Criando a Tabela TableIncrementalStatistics —

CREATE TABLE TableIncrementalStatistics
(ID Int Null,
Acao NVarchar(40) Default NewID(),
Data DateTime Null,
Quartil  AS (datepart(year,[Data])*(10)+datepart(quarter,[Data])) PERSISTED
) ON PartitionSchemeIncrementalStatistics (Quartil)
Go

Ótimo, toda estrutura para armazenar nossos dados já esta pronta, bem como, a lógica para distribuir e particionar os dados que serão inseridos na tabela TableIncrementalStatistics.

Ufa, ainda temos um bom caminho pela frente, mas já avançamos bastante, agora temos realizar uma alteração nas configurações do nosso banco de dados IncrementalStatistics, sendo esta necessária para podermos aplicara o uso de estatísticas incrementais, estou me referindo a opção Auto Create Statistics muito conhecida, onde vamos alterar o seu valor default para Incremental = On, conforme apresenta o Bloco de Código 5 abaixo:

— Bloco de Código 5 —

— Habilitando o uso de Incremental Statistics —
Alter Database IncrementalStatistics
Set Auto_Create_Statistics On (INCREMENTAL = On)
Go

O próximo passo consiste na criação do índice que iremos utilizar em na TableIncrementalStatistics pois você deve ter notado que realizamos a criação da tabela sem a definição de uma chave primária, desta maneira  utilizamos o Bloco de Código 6 para criação dos respectivo índice em seguida confirmamos se esta tabela esta fazendo uso das estatísticas incrementais habilitada no bloco de código 5:

— Bloco de Código 6 —

— Criação do índice Clustered —
Create Clustered Index Ind_TableIncrementalStatistics_ID
On [TableIncrementalStatistics] (ID)
GO

— Confirmando se as estatísticas incrementais está habilita —
SELECT
OBJECT_NAME(object_id) TableName
,name
,is_incremental
,stats_id
FROM sys.stats
WHERE name = ‘Ind_TableIncrementalStatistics_ID’
Go

Figura 1 – Confirmando o uso das estatísticas incrementais no índice Ind_TableIncrementalStatistics_ID.

Observação: Note que ao executar o Select realizado na visão de sistema sys.stats a coluna Is_Incremental deverá retornar e apresentar o valor igual á 1, isso indica que TableIncrementalStatistics esta neste momento fazendo uso das estatísticas incrementais.

Muito bem, chegou a hora de popular nossas tabelas, realizaremos a inserção de 8.000 linhas de registros, sendo estes particionados em grupos de 2.000 registros para cada partição que forma e compõem a estrutura da nossa tabela. Vamos então utilizar o Bloco de Código 7 apresentado na sequência:

— Bloco de Código 7 —

— Inserindo os dados na TableIncrementalStatistics —
Insert Into TableIncrementalStatistics (ID, Data)
Values (1, ‘2017-11-22’)
Go 2000

Insert Into TableIncrementalStatistics (ID, Data)
Values (2, ‘2017-06-05’)
Go 2000

Insert Into TableIncrementalStatistics (ID, Data)
Values (3, ‘2017-01-25’)
Go 2000

Insert Into TableIncrementalStatistics (ID, Data)
Values (4, ‘2017-08-13’)
Go 2000

Após a inserção das 8.000 linhas de registros, vamos confirmar a distribuição dos dados através do Bloco de Código 8 declarado abaixo, conforme ilustra o resultado da Figura 2:

— Bloco de Código 8 —

— Consultando a distribuição e particionamento dos dados —
Select partition_number, rows
From sys.partitions
Where OBJECT_NAME(OBJECT_ID)=’TableIncrementalStatistics’
Go

Figura 2 – Distribuição dos dados na tabela TableIncrementalStatistics de acordo com o valor e partição.

Estamos chegando no final, agora vamos realizar algumas manipulações no conjunto de dados armazenados na tabela TableIncrementalStatistics afim de forçarmos o processos de atualização das estatísticas, procedimento que vai nos ajudar a entender o processo de incremento na atualização das estatísticas de armazenamento e processamento utilizados pelo Microsoft SQL quando solicitado acesso aos dados armazenados em nossa table, para tal operação vamos utilizar o Bloco de Código 9:

— Bloco de Código 9 —

— Consultando dados na TableIncrementalStatistics —
Select Id, Acao, Data, Quartil From TableIncrementalStatistics
Where ID = 1
Go

Select Id, Acao, Data, Quartil From TableIncrementalStatistics
Where ID >= 2
Go

Select Id, Acao, Data, Quartil From TableIncrementalStatistics
Where ID <> 3
Go

Pronto, realizamos algumas operações de Select com intuito de forçar a criação de novas estatísticas, e principalmente a atualização das estatísticas atuais. Por enquanto nada de diferente, na sequência vamos consultar as informações sobre as estatísticas relacionadas a nossa tabela, fazendo uso do Bloco de Código 10 e analisando o resultado apresentado através da Figura 3:

— Bloco de Código 10 —

— Consultando as informações sobre as estatísticas da tabela TableIncrementalStatistics —
Select object_id, stats_id , last_updated , rows , rows_sampled , steps
From sys.dm_db_stats_properties(OBJECT_ID(‘[TableIncrementalStatistics]’),1);
Go

Figura 3 – Dados relacionados a estatísticas da TableIncrementalStatistics.

Como você pode ver, o DMF sys.dm_db_stats_properties mostra-nos que as estatísticas foram atualizadas na data do dia 23/05/2017 ás 16:55, para a tabela que tem 8000 linhas.

Neste momento, podemos nos perguntar: Qual partição da tabela inclui as estatísticas atualizadas?

A resposta para esta sua pergunta vem justamente atráves do uso nova DMF sys.dm_db_incremental_stats_properties já apresentada aqui no meu blog. Sendo esta DMF responsável em apresentar as propriedades estatísticas incremental, recuperando as mesma informação obtida a partir do DMF sys.dm_db_stats_properties, também super conhecida e apresentada no meu blog. Neste caso a sys.dm_db_stats_properties vai apresentar dados de  cada partição da tabela particionada, fornecendo-lhe com os mesmos parâmetros; a identificação do objeto e a identificação de estatísticas.

Caminhando mais um pouco, estamos próximos do final, vamos então formar o SQL Server a justamente realizar o processo de atualização das estatísticas para nossa partição de número 3, realizando o processo de exclusão de 1.500 linhas de registros, em seguida consultando nossa TableIncrementalStatistics, conforme apresenta o Bloco de Código 11:

— Bloco de Código 11 —

— Excluíndo 1.500 linhas —
Delete Top (1500) From TableIncrementalStatistics
Where ID = 2
Go

— Consultando os dados —
Select Id, Acao, Data, Quartil From TableIncrementalStatistics
Where ID <> 4
Go

Agora vamos novamente consultar os dados estatísticas, sendo assim repita a execução do Bloco de Código 10, observe que você deverá receber um conjunto de valores similares a Figura 4, onde a coluna Last_Updated deverá apresentar a data e hora da última atualização:

Figura 4 – Data e hora da última atualização da estatística.

Ufa, estamos quase lá, agora chegou a hora da verdade, hora de comprovar se realmente o SQL Server esta fazendo as coisas certas, vamos fazer uso da DMF sys.dm_incremental_stats_properties para validar se a estatística da partição 3 foi atualizada, o resultado pode ser analisado através da Figura 5. Para isso vamos utilizar o Bloco de Código 12 a seguir:

— Bloco de Código 12 —

— Consultando as informações sobre as estatísticas incrementais —
Select object_id, stats_id,
partition_number,
last_updated,
rows, rows_sampled,
steps
From sys.dm_db_incremental_stats_properties(OBJECT_ID(‘TableIncrementalStatistics’),1)
Go

Figura 5 – Informações sobre as atualizações de estatísticas, onde a partição 3 foi atualizada de maneira independente das demais.

Sensacional, conseguimos, muito legal este recurso, como sempre o Microsoft SQL Server nos surpreende com a sua capacidade e potencialidade de recursos.

Referências

Post Anteriores

https://pedrogalvaojunior.wordpress.com/2017/04/13/dica-do-mes-microsoft-sql-server-identificando-as-transacoes-que-estao-utilizando-o-transact-log/

https://pedrogalvaojunior.wordpress.com/2017/03/01/dica-do-mes-microsoft-sql-server-2016-sp1-novo-argumento-use-hint-disponivel-para-query-hints/

https://pedrogalvaojunior.wordpress.com/2017/01/16/dica-do-mes-conhecendo-a-nova-dmf-sys-dm_exec_input_buffer-no-microsoft-sql-server-2016/

https://pedrogalvaojunior.wordpress.com/2016/11/28/dica-do-mes-sql-server-2016-sp1-comando-create-or-alter/

https://pedrogalvaojunior.wordpress.com/2016/10/24/dica-do-mes-sql-server-2016-obtendo-informacoes-sobre-o-cache-de-execucao-de-funcoes/

Conclusão

Administrar, gerenciar, cuidar e prover um ambiente sempre no melhor estado possível não é uma das atividades mais tranquilas e simples desempenhadas por profissionais ou administradores de banco de dados, mas também não pode ser considerada um “bicho de sete cabeças” ou uma “caixa preta” ainda mais quando este servidor de banco de dados utiliza o Microsoft SQL Server.

Neste post você pode conhecer um pouco mais de como o Microsoft SQL Server trabalha de maneira árdua na busca da melhor maneira para encontrar e retornar os dados solicitados em nossas transações. Ao longo de novas versões o produto esta cada vez mais maduro, confiável e inteligente, sempre nos surpreendendo com sua capacidade.

Algo que não poderia ser diferente no uso das Estatísticas Incrementais, recurso que nos permite adotar uma nova maneira de atualização dos dados internos relacionados ao armazenamento das nossas informações, mas principalmente prover um auxílio para próprio Database Engine mas atividades para identificar o melhor caminho para se processar uma query.

Agradecimentos

Mais uma vez obrigado por sua visita, agradeço sua atenção, fique a vontade para enviar suas críticas, sugestões, observações e comentários.

Um forte abraço, nos encontramos logo logo…

Valeu….

Anúncios

Sobre Junior Galvão - MVP

Profissional com vasta experiência na área de Tecnologia da Informação e soluções Microsoft. Graduado no Curso Superior em Gestão da Tecnologia de Sistemas de Informação. Pós-Graduado no Curso de Gestão e Engenharia de Processos para Desenvolvimento de Software com RUP na Faculdade FIAP - Faculdade de Informática e Administração Paulista de São Paulo. Pós-Graduado em Gestão da Tecnologia da Informação Faculdade - ESAMC Sorocaba. Formação MCDBA Microsoft, autor de artigos acadêmicos e profissionais postados em Revistas, Instituições de Ensino e WebSistes. Meu primeiro contato com tecnologia ocorreu em 1995 após meus pais comprarem nosso primeiro computador, ano em que as portas para este fantástico mundo se abriram. Neste mesmo ano, comecei o de Processamento de Dados, naquele momento a palavra TI não existia, na verdade a Tecnologia da Informação era conhecida como Computação ou Informática, foi assim que tudo começou e desde então não parei mais, continuando nesta longa estrada até hoje. Desde 2001 tenho atuado como Database Administrator - Administrador de Banco de Dados - SQL Server em tarefas de Administração, Gerenciamento, Migração de Servidores e Bancos de Dados, Estratégias de Backup/Restauração, Replicação, LogShipping, Implantação de ERPs que utilizam bancos SQL Server, Desenvolvimento de Funções, Stored Procedure, Triggers. Experiência na Coordenação de Projetos de Alta Disponibilidade de Dados, utilizando Database Mirroring, Replicação Transacional e Merge, Log Shipping. Atualmente trabalho como Administrador de Banco de Dados no FIT - Instituto de Tecnologia da Flextronics, como também, Consultor em Projetos de Tunnig e Performance para clientes, bem como, Professor Titular na Fatec São Roque. Desde 2008 exerço a função de Professor Universitário, para as disciplinas de Banco de Dados, Administração, Modelagem de Banco de Dados, Programação em Banco de Dados, Sistemas Operacionais, Análise e Projetos de Sistemas, entre outras. Possuo titulações e Reconhecimentos: Microsoft MVP, MCC, MSTC e MIE.
Esse post foi publicado em Banco de Dados, Banco de Dados, Correções, Curiosidades, DBA, Descoberta, Desenvolvimento, Dica do Mês, Dicas, Diversos, Ferramentas, Inovações, Microsoft, MSDN, Mundo SQL Server, Sistema Operacional, SQL Server, TechNet, Transact-SQL, Utilitários, VIRTUAL PASS BR, Virtualização, Visual Studio, Visual Studio, Windows, Windows Server e marcado , , , , , , , , , , , , , , , , , , , , , , , , , , , , , . Guardar link permanente.

4 respostas para Dica do Mês – Conhecendo e aplicando o uso de atualização de estatísticas incrementais

  1. Post muito bem explicado Junior! Parabéns!

    Curtir

  2. Pingback: Dica do Mês – Utilizando a Trace Flag 9292 para exibir objetos estatísticos úteis – Junior Galvão – MVP – Data Platform – SQL Server

  3. Pingback: Dica do Mês – Simulando a inserção de uma massa de dados aleatória | Junior Galvão – MVP – Data Platform

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s